Search results

Search for "manganese oxide" in Full Text gives 19 result(s) in Beilstein Journal of Nanotechnology.

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • incorporated surface-modified PD-L1 inhibitory peptide and MMP2 substrate peptide [54]. Manganese oxide (MnO2)-based NPs function as MRI imaging agents and can also utilize Fenton-like reactions to deplete GSH and generate •OH to mediate tumor cell death [123]. In the work of Fu et al., a hollow MnO2 NP-based
PDF
Album
Review
Published 27 Feb 2023

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • many years, titania has been employed as a colorant in food, cosmetics, and sunscreen. Moreover, Ti-containing metal alloys have been widely utilized in medical fields, because the have a higher biocompatibility than other vastly explored metal oxides such as silica, manganese oxide, and iron oxide
PDF
Album
Review
Published 14 Feb 2022

Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers

  • Yi Wang,
  • Yanhua Song,
  • Chengwei Ye and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 1280–1290, doi:10.3762/bjnano.11.112

Graphical Abstract
  • nanofibers) or metal oxides (manganese oxide, nickel oxide, RuO2, Co3O4, etc.). Carbon is the primary material used to manufacture EDLC electrodes since it has a high specific surface area, which can easily form a double layer to store more electrical energy [6][7][8][9][10]. Since there is still room for
PDF
Album
Full Research Paper
Published 27 Aug 2020

Synthesis of a MnO2/Fe3O4/diatomite nanocomposite as an efficient heterogeneous Fenton-like catalyst for methylene blue degradation

  • Zishun Li,
  • Xuekun Tang,
  • Kun Liu,
  • Jing Huang,
  • Yueyang Xu,
  • Qian Peng and
  • Minlin Ao

Beilstein J. Nanotechnol. 2018, 9, 1940–1950, doi:10.3762/bjnano.9.185

Graphical Abstract
  • successful loading of of iron oxide and manganese oxide in the two-step procedure. To further characterize the morphologies and structures of Fe3O4/diatomite and MnO2/Fe3O4/diatomite, transmission electron microscopy (TEM) and high-resolution transmission electron microscope (HRTEM) analyses were also
PDF
Album
Supp Info
Full Research Paper
Published 06 Jul 2018

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

  • Shahreen Binti Izwan Anthonysamy,
  • Syahidah Binti Afandi,
  • Mehrnoush Khavarian and
  • Abdul Rahman Bin Mohamed

Beilstein J. Nanotechnol. 2018, 9, 740–761, doi:10.3762/bjnano.9.68

Graphical Abstract
PDF
Review
Published 27 Feb 2018

Fabrication of CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with enhanced catalytic properties for CO oxidation

  • Ling Liu,
  • Jingjing Shi,
  • Hongxia Cao,
  • Ruiyu Wang and
  • Ziwu Liu

Beilstein J. Nanotechnol. 2017, 8, 2425–2437, doi:10.3762/bjnano.8.241

Graphical Abstract
  • interfacial oxidation–reduction under mild conditions. For example, Mn3O4/CeO2 hybrid nanotubes were created by a template-based process involving a redox reaction between the cryptomelane-type manganese oxide nanowire template and Ce(NO3)3 [20]. Ce–Mn nanotubes were also fabricated by treating Ce(OH)CO3
PDF
Album
Full Research Paper
Published 16 Nov 2017

Freestanding graphene/MnO2 cathodes for Li-ion batteries

  • Şeyma Özcan,
  • Aslıhan Güler,
  • Tugrul Cetinkaya,
  • Mehmet O. Guler and
  • Hatem Akbulut

Beilstein J. Nanotechnol. 2017, 8, 1932–1938, doi:10.3762/bjnano.8.193

Graphical Abstract
  • ]. However, there are few reports explaining their electrochemical reaction response relating to their different manganese oxide crystalline structures. In this work, different polymorphs of MnO2 (α-, β-, and γ-) were produced by a microwave hydrothermal method. Freestanding graphene/MnO2 cathodes were
PDF
Album
Full Research Paper
Published 14 Sep 2017

Structural properties and thermal stability of cobalt- and chromium-doped α-MnO2 nanorods

  • Romana Cerc Korošec,
  • Polona Umek,
  • Alexandre Gloter,
  • Jana Padežnik Gomilšek and
  • Peter Bukovec

Beilstein J. Nanotechnol. 2017, 8, 1032–1042, doi:10.3762/bjnano.8.104

Graphical Abstract
  • responsible for the electroneutrality, while in hollandite the tunnels are occupied with Ba2+ cations. Cryptomelane MnO2 with the chemical composition KMn74+Mn3+O16·nH2O is the most extensively studied octahedral manganese oxide molecular sieve. A minor amount of Mn3+ replaces Mn4+ in the center of the
PDF
Album
Full Research Paper
Published 10 May 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • scalable and relatively cost effective [14][15][16]. In particular, among all the TMO NPs, titanium dioxide [17], manganese oxide [18], iron oxide [19] and zinc oxide [20] have attracted the most attention due to their particular interesting and advantageous properties. By changing the reaction conditions
  • it a promising catalyst for fuel cells. Manganese oxide (MnO, Mn2O3, MnO2, Mn3O4, Mn2O7)–graphene hybrids Pyrolusite (MnO2), hausmanite (Mn3O4) and bixbyite (Mn2O3) are important minerals of manganese. These oxides have attracted great attention because of their environmental benignity and the high
PDF
Album
Review
Published 24 Mar 2017

Improved lithium-ion battery anode capacity with a network of easily fabricated spindle-like carbon nanofibers

  • Mengting Liu,
  • Wenhe Xie,
  • Lili Gu,
  • Tianfeng Qin,
  • Xiaoyi Hou and
  • Deyan He

Beilstein J. Nanotechnol. 2016, 7, 1289–1295, doi:10.3762/bjnano.7.120

Graphical Abstract
  • capacity of 875.5 mAh g−1 after 200 cycles and 1005.5 mAh g−1 after 250 cycles with a significant coulombic efficiency of 99.5%. Keywords: carbon nanofiber network; electrospinning; lithium-ion battery; manganese oxide; nitrogen modification; Introduction Lithium-ion batteries (LIBs) have been identified
  • , transition metal oxides are the focus of intensive efforts for LIB anode materials due to their remarkable specific capacity, low cost and environmental compatibility [6][7][8][9][10][11]. Manganese oxide (MnO) is a particularly good choice owing to its high theoretical specific capacity of 755 mAh g−1, low
PDF
Album
Full Research Paper
Published 14 Sep 2016

Surfactant-controlled composition and crystal structure of manganese(II) sulfide nanocrystals prepared by solvothermal synthesis

  • Elena Capetti,
  • Anna M. Ferretti,
  • Vladimiro Dal Santo and
  • Alessandro Ponti

Beilstein J. Nanotechnol. 2015, 6, 2319–2329, doi:10.3762/bjnano.6.238

Graphical Abstract
  • the surfactants adsorbed on the NCs. Keywords: manganese oxide; manganese sulfide; nanocrystal; polymorphism control; solvothermal synthesis; sulfur; surfactant; Introduction Manganese(II) sulfide (MnS) is a wide bandgap (Eg ≈ 3 eV) [1], p-type, antiferromagnetic semiconductor that crystallizes in
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2015

Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish

  • Zitao Zhou,
  • Jino Son,
  • Bryan Harper,
  • Zheng Zhou and
  • Stacey Harper

Beilstein J. Nanotechnol. 2015, 6, 1568–1579, doi:10.3762/bjnano.6.160

Graphical Abstract
  • have been noted to contribute to lower viability in cell culture studies with A549 and HT29 cells [30]. Similar morphology effects on toxicity have been observed in studies of manganese oxide, where the sharp points and edges were found to generate more ROS than smooth surfaces [44]. We tested this
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • fluorescence studies. The size of the particles was found to be 31 ± 4 nm with an emission peak at approx. 620 nm. The in vitro studies with human umbilical vein endothelial cells (HUVEC) suggested that these NPs could be used simultaneously as fluorescent and MRI contrasting agent. 2.4 Manganese oxide as
  • magnetically active silica-encapsulated manganese oxide nanoparticles. In addition, rhodamine B isothiocyanate (RBITC) and folic acid (FA) were conjugated on the NP surface. These NPs showed absorption peaks at ca. 570 and 280 nm, which correspond to RBITC and FA, respectively. The MRI studies suggested that
  • biochemical assays also confirmed low toxicity of Mn3O4@SiO2(RB)–PEG–Apt NPs. Again, Schladt et al. [24] designed PEG-functionalized silica-shell-coated manganese oxide NPs. Further the surface of these NPs was modified by using fluorescent APS–Atto 465. These nanocomposites were characterized by UV–vis and
PDF
Album
Review
Published 24 Feb 2015

Biological responses to nanoscale particles

  • Reinhard Zellner

Beilstein J. Nanotechnol. 2015, 6, 380–382, doi:10.3762/bjnano.6.37

Graphical Abstract
  • used in this study were those of current, wide-spread technological importance, such as metals (e.g., silver, gold, platinum), oxides (e.g., silica, iron oxide, cerium oxide, manganese oxide), polymers (e.g., polystyrene) and quantum dots (II/VI semiconductors). Naturally occurring and industrially
PDF
Editorial
Published 05 Feb 2015

Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization

  • Lisa Landgraf,
  • Ines Müller,
  • Peter Ernst,
  • Miriam Schäfer,
  • Christina Rosman,
  • Isabel Schick,
  • Oskar Köhler,
  • Hartmut Oehring,
  • Vladimir V. Breus,
  • Thomas Basché,
  • Carsten Sönnichsen,
  • Wolfgang Tremel and
  • Ingrid Hilger

Beilstein J. Nanotechnol. 2015, 6, 300–312, doi:10.3762/bjnano.6.28

Graphical Abstract
  • , was cytotoxic to many cell lines [11][12][13][14], rendering an appropriate coating of gold nanoparticles indispensable for biocompatibility. Metal oxide based nanoparticles such as iron oxide and manganese oxide are ideal tools for MRI applications. They are easy to synthesize and they showed
  • exposure, native), which were set to 100%. DPA: D-penicillamine, MPA: 3-mercaptopropionic acid, CyA: cysteamine. Size effects of the different manganese oxide nanoparticle formulations on the cellular ATP levels of endothelial cells, reflecting activity of cell metabolism. (a) Cells were treated with Au
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2015

Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

  • Matthias Augustin,
  • Daniela Fenske,
  • Ingo Bardenhagen,
  • Anne Westphal,
  • Martin Knipper,
  • Thorsten Plaggenborg,
  • Joanna Kolny-Olesiak and
  • Jürgen Parisi

Beilstein J. Nanotechnol. 2015, 6, 47–59, doi:10.3762/bjnano.6.6

Graphical Abstract
  • performance for the mesoporous α-Mn2O3 species. Keywords: electrocatalytic activity; in situ X-ray diffraction; manganese glycolate; manganese oxide nanoparticles; mesoporous α-Mn2O3; Introduction Manganese oxides are a class of inexpensive compounds with a high potential for nanostructuring, which makes
  • well as morphological characteristics [4][5]. Many manganese oxide phases consist of tunnel structures built from MnO6 octahedra; these tunnels facilitate the access of reactants to the active reaction sites as well as the absorption of small molecules within the structure. The latter property is
  • especially useful for application as molecular sieves and absorbents for the removal of toxic species from waste gases such as carbon monoxide and nitrogen oxide [6][7][8]. Additionally, manganese oxide structures exhibiting oxygen vacancies provide additional active sites for reduction and oxidation
PDF
Album
Supp Info
Full Research Paper
Published 06 Jan 2015

Inorganic Janus particles for biomedical applications

  • Isabel Schick,
  • Steffen Lorenz,
  • Dominik Gehrig,
  • Stefan Tenzer,
  • Wiebke Storck,
  • Karl Fischer,
  • Dennis Strand,
  • Frédéric Laquai and
  • Wolfgang Tremel

Beilstein J. Nanotechnol. 2014, 5, 2346–2362, doi:10.3762/bjnano.5.244

Graphical Abstract
  • monitored by optical spectroscopy [56][73]. The synthetic route can easily be applied to other material compositions as previously demonstrated by the formation of heterostructures composed out of gold and manganese oxide [39]. Au@MnO heterodimers were prepared using preformed Au nanoparticles as seeds, as
  • ], the gold nanoparticles were functionalized with 1-octadecanethiol to suppress multiple nucleation of manganese oxide on different crystal facets or surface defects. This surface functionalization was proved not to be necessary for Au@Fe3O4 heterodimers. The morphology as well as the sizes of the metal
  • surface, only the metal oxide domain is encapsulated leaving the hydrophobic character of the gold domain untouched (Figure 15). This selectivity is enhanced due to the functionalization of the gold domain with a thiol, which can be performed either prior to the growth of manganese oxide or after
PDF
Album
Review
Published 05 Dec 2014

A facile approach to nanoarchitectured three-dimensional graphene-based Li–Mn–O composite as high-power cathodes for Li-ion batteries

  • Wenyu Zhang,
  • Yi Zeng,
  • Chen Xu,
  • Ni Xiao,
  • Yiben Gao,
  • Lain-Jong Li,
  • Xiaodong Chen,
  • Huey Hoon Hng and
  • Qingyu Yan

Beilstein J. Nanotechnol. 2012, 3, 513–523, doi:10.3762/bjnano.3.59

Graphical Abstract
  • sheets. In this part, the electrostatic force drives the SO42− ions into the spacing between the carbon layers of the graphite electrode and breaks the connection between graphene layers. The second part is the deposition of manganese oxide. In this part, Mn2+ is oxidized and deposited onto the graphene
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2012

Surface functionalization of aluminosilicate nanotubes with organic molecules

  • Wei Ma,
  • Weng On Yah,
  • Hideyuki Otsuka and
  • Atsushi Takahara

Beilstein J. Nanotechnol. 2012, 3, 82–100, doi:10.3762/bjnano.3.10

Graphical Abstract
  • M H2O2, followed by citrate-bicarbonate (CB) to extract inorganic impurities (iron and manganese oxide). The resulting gel is washed with cold 0.5 M Na2CO3 to remove citrate remnants, and redispersed in weak acidic solution. The final product, cottonlike imogolite, is obtained by freeze-drying of
PDF
Album
Review
Published 02 Feb 2012
Other Beilstein-Institut Open Science Activities